УДК 551.21

СПУТНИКОВЫЕ И НАЗЕМНЫЕ НАБЛЮДЕНИЯ ЭКСПЛОЗИВНЫХ ИЗВЕРЖЕНИЙ ВУЛКАНА ЖУПАНОВСКИЙ (КАМЧАТКА, РОССИЯ) в 2013 и 2014-2016 гг.

© 2018 г. О. А. Гирина^{*,1}, Е. А. Лупян², А. А. Сорокин³, Д. В. Мельников¹, А. Г. Маневич¹, Т. М. Маневич¹

¹ Институт вулканологии и сейсмологии ДВО РАН 683006 Петропавловск-Камчатский, б-р Пийпа, 9 ² Институт космических исследований РАН 117997 Москва, ул. Профсоюзная, 38/32 ³ Вычислительный центр ДВО РАН 680000 Хабаровск, ул. Ким Ю Чена, 65 *e-mail: girina@kscnet.ru Поступила в редакцию 31.05.2017 г.

Активный андезитовый вулкан Жупановский состоит из четырех слившихся конусов стратовулканов. Исторические эксплозивные извержения в 1940, 1957, 2014—2016 гг. происходили из конуса Приемыш. Недавние извержения Жупановского были изучены с использованием спутниковых данных, полученных из информационной системы "Мониторинг активности вулканов Камчатки и Курил" (VolSatView), а также некоторых видео- и визуальных наблюдений вулкана. Первое извержение Жупановского началось 22 октября и продолжалось до 24 октября 2013 г. Центрами мощного выноса газовых шлейфов, содержащих некоторое количество пепла, были фумаролы, расположенные на западном склоне Приемыша. Новое извержение вулкана началось 6 июня 2014 г. и продолжалось до 20 ноября 2016 г. Эксплозивная активность Жупановского в 2014—2016 гг. была неравномерной, на спутниковых снимках пепловые шлейфы были отмечены примерно 112 дней в течение 17 месяцев. Наиболее активно вулкан работал с июня до октября и в ноябре 2014 г., с января до апреля 2015 г. и в январе—феврале 2016 г., в это время на спутниковых снимках в районе конуса Приемыш почти постоянно отмечалась яркая термальная аномалия. Кульминацией извержения вулкана Жупановский в 2014—2016 гг. были эксплозивные события и обрушения частей конуса Приемыш 12 и 14 июля и 30 ноября 2015 г. и 12 февраля и 20 ноября 2016 г.

DOI: 10.7868/S0203030618010017

введение

Активный андезитовый вулкан Жупановский (53°35' с.ш., 159°9' в.д., 2958 м) расположен в юго-восточной зоне Камчатки, в 40 км севернее Авачинско-Корякской группы вулканов (рис. 1). Его постройка представляет собой хребет, состоящий из четырех слившихся стратовулканов [Масуренков и др., 1991]. Некоторые авторы относят к собственно вулкану Жупановский только первые с востока два конуса, считая конусы Приемыш и Бастион отдельными вулканами [Литвинов, Бурмаков, 1993; Базанова и др., 2009]. Активный конус Приемыш (2773 м) примыкает с запада ко второму конусу Жупановского вулкана, на его вершине имеется кратер диаметром 450 м и в нем, возле юго-западной стенки кратера, воронка диаметром 80 м [Литвинов, Бурмаков, 1993]. Фундамент постройки Приемыша слагают мощные дацитовые лавы

и туфы пирокластических потоков позднеплейстоценового возраста, перекрывающие руины среднеплейстоценового массива Треугольник и плиоценового вулкана Клык [Пузанков и др., 2015]. Приемыш начал формироваться ~3500-3000¹⁴C лет назад [Базанова и др., 2009]. Состав его продуктов - от ортопироксеновых дацитов до пироксеновых андезитов. извержения – преимушественно эффузивные, но в интервале 3500-1800¹⁴С л.н. происходили практически непрерывные эксплозивные извержения [Базанова и др., 2009]. В дальнейшем отмечено только два крупных эксплозивных извержения (~2100 и 700-800¹⁴С л.н.) с сильными пеплопадами, во время первого из которых были сформированы пемзовые пирокластические потоки. В историческое время слабые и умеренные эксплозивные извержения вулкана, относящиеся непосредственно к Приемышу, произошли в 1940, 1957, 2013, 2014–2016 гг. [Гирина, Ненашева, 2015;

Рис. 1. Расположение (а) и общий вид вулкана Жупановский 26 октября 2013 г. (1, 2 – восточные вершины вулкана, 3 – Приемыш, 4 – Бастион, фото С. Самойленко) (б).

Гирина и др., 2014, 2016, 2016а, 2016б; Пузанков и др., 2015; Сирин, 1958]. Данные в статье приводятся по Гринвичскому времени (UTC).

МОНИТОРИНГ АКТИВНОСТИ ВУЛКАНА ЖУПАНОВСКИЙ

Камчатская группа реагирования на вулканические извержения – KVERT (Kamchatkan Volcanic Eruption Response Team) Института вулканологии и сейсмологии ДВО РАН выполняет ежедневный спутниковый мониторинг вулкана Жупановский с 2002 г. [Гордеев, Гирина, 2014; http://www.kscnet. ru/ivs/kvert/]. Спутниковый мониторинг является основным методом наблюдений за вулканом, в связи с отсутствием прямой видимости его из

населенных пунктов (Жупановский расположен в 70 км к северу от г. Петропавловск-Камчатский за Авачинско-Корякской группой вулканов). Ближайшие сейсмические станции Камчатского филиала Федерального исследовательского центра Единой геофизической службы (КФ ФИЦ ЕГС) РАН расположены в окрестностях вулканов Авачинский и Корякский – в 38 км от Жупановского [Сенюков и др., 2015]. За 2013-2014 гг. и январьапрель, сентябрь-ноябрь 2015 г. КVERT располагает только фрагментарными данными визуальных наблюдений за вулканом, полученными от вулканологов, сотрудников Природного парка "Вулканы Камчатки" и туристов. 13 мая 2015 г. в районе оз. Налычево (в 52 км от вулкана) была установлена КФ ФИЦ ЕГС РАН видеокамера [Сенюков и др.,

2015] с дискретностью доступной съемки от 2 до 5 минут в мае-августе 2015 г. и 30 минут в декабре 2015 и в 2016 гг.

С 2013 г. спутниковый мониторинг вулкана выполнялся с помощью информационной системы (ИС) "Мониторинг активности вулканов Камчатки и Курил" (VolSatView, http://volcanoes.smislab.ru), позволяющей комплексно работать с различными спутниковыми данными (NOAA (прибор AVHRR), Terra и Aqua (MODIS), Suomi NPP (VIIRS), Meteop-M (1, 2); Himawari-8, Landsat (4, 5, 7 и 8), EO-1 Нурегion, Канопус В, Ресурс П и др.), а также метео- и наземной информацией, результатами моделирования распространения пепловых шлейфов для непрерывного мониторинга и исследования вулканической активности Курило-Камчатского региона [Гордеев и др., 2016].

ЭКСПЛОЗИВНОЕ ИЗВЕРЖЕНИЕ ВУЛКАНА в 2013 г.

Согласно спутниковым данным, первое современное извержение вулкана Жупановский началось 22 октября 2013 г. [Гирина, Ненашева, 2015]. Первый пепловый шлейф от вулкана длиной 48 км (азимут 122 град.) был обнаружен в 00:51 UTC 22 октября на снимке NOAA-16 [Гирина и др., 2014]. 22-24 октября пепловые шлейфы наблюдались почти постоянно, они несли слабое или умеренное количество пепла на высоте 3.0-4.0 км над уровнем моря (н.у.м.) и протягивались в основном на юго-восток, юг и юго-запад от вулкана (табл. 1, рис. 2). Отметим, что рядом авторов [Самойленко и др., 2014; Сенюков и др., 2015; и др.] начало извержения описано как 15:00 UTC 23 октября (по сообщениям наблюдателей Природного парка "Вулканы Камчатки"), однако спутниковые данные позволили уточнить эту дату.

На снимке NOAA-18 в 04:35 UTC 24 октября был зарегистрирован наиболее протяженный пепловый шлейф (120 км), после 23:34 UTC этого дня пепловые шлейфы от Жупановского не отмечались [VONA KVERT 2013–26].

По визуальным данным, 24 и 26 октября наиболее мощно работали фумаролы на западном склоне Приемыша и на перемычке его со вторым конусом вулкана Жупановский (см. рис. 1) [Гирина, Ненашева, 2015]. Согласно спутниковому снимку ASTER (00:44 UTC 26 октября 2013 г., the Geo Grid Data, Japan), пеплом покрыт, преимущественно, южный склон вулкана. 26 октября 2013 г. в кратере конуса Приемыш лежал снег, рядом с фумаролами на западном склоне Приемыша мощность пепла составляла 15–20 см [Самойленко и др., 2014].

Рис. 2. Высота (а), протяженность (б) и направления распространения (в) пепловых шлейфов от вулкана Жупановский при извержении в 2013 и 2014–2016 гг.

Ретроспективный анализ сейсмических данных из района Жупановского, выполненный по станциям, расположенным в 38–40 км от вулкана, показал слабое усиление его сейсмической активности в августе 2013 г. (8 событий из 18, зарегистрированных в 2013 г.) [Сенюков и др., 2015].

Суммируя вышеприведенные данные, отметим, что первое современное извержение вулкана Жупановский продолжалось с 22 по 24 октября 2013 г. Центрами мощного выноса газовых шлейфов, содержащих пепел, были фумаролы, расположенные на западном склоне Приемыша.

ГИРИНА и др.

Дата	Время, UTC	Спутник	Длина пеплового шлейфа, км	Азимут смещения шлейфа, градус	Высота пеплового шлейфа, км н.у.м.		
1	2	3	4	5	6		
Извержение в 2013 г.							
22.10.13	0:51	NOAA 16	48	122	2		
22.10.13	1:05	TERRA	40	119	3.5		
23.10.13	11:25	TERRA	21	124			
24.10.13	0:25	NOAA 16	87	185			
24.10.13	4:35	NOAA 18	120	185	3		
24.10.13	10:17	NOAA 16	15	240	3.5		
24.10.13	10:30	TERRA	23	244			
24.10.13	16:19	NOAA 19	60	207			
24.10.13	16:52	NOAA 18	75	209	3		
		Изверж	ение в 2014–2016 гг.				
09.06.14	0:31	TERRA	60	90	4		
09.06.14	2:47	NOAA 19	10	90			
09.06.14	3:49	NOAA 18	15	100			
11.06.14	19:08	NOAA 18	60	110	2.5		
12.06.14	2:50	AQUA	91	110			
13.06.14	1:55	AQUA	62	100	3		
14.06.14	0:50	TERRA	25	130			
15.06.14	15:11	AQUA	20	230			
17.06.14	1:17	NOAA 19	140	76			
18.06.14	1:07	NOAA 19	19	280	3.2		
18.06.14	16:45	NOAA 19	7	285	4.5		
19.06.14	14:53	NOAA 19	110	23	7.2		
20.06.14	0:47	NOAA 19	670	47			
09.07.14	23:50	AQUA	120	90	6		
10.07.14	1:26	AQUA	130	90			
18.07.14	2:18	NOAA 19	70	45	5		
21.07.14	1:05	TERRA	30	45	3.5		
27.07.14	2:22	NOAA 19	38	10			
06.08.14	1:06	TERRA	150	75	1.5		
11.08.14	19:19	NOAA 19	90	135	3.5		
12.08.14	3:29	NOAA 18	80	50	2		
13.08.14	0:54	NOAA 19	80	45	4.5		
19.08.14	17:07	NOAA 19	51	175			
20.08.14	5:25	NOAA 18	110	175	3		
28.08.14	3:55	NOAA 18	80	225	4		
30.08.14	2:06	AQUA	23	120	4		
01.09.14	1:54	AQUA	22	235	3.5		
02.09.14	0:47	TERRA		230	4		
03.09.14	2:05	NOAA 19	/6	182	4		
04.09.14	2:25	AQUA	43	135	2		
07.09.14	1:23	NOAA 19	92	135	10.5		

Таблица 1. Пепловые шлейфы от вулкана Жупановский во время извержений в 2013 г. и 2014–2016 гг. по данным из ИС VolSatView

Таблица 1 (продолжение)

	_	-		_	
1	2	3	4	5	6
07.09.14	3:00	NOAA 19	210	135	6
07.09.14	5:16	NOAA 18	383	135	3.5
08.09.14	0:11	TERRA	83	135	3
09.09.14	10:29	TERRA	149	152	
10.09.14	1:45	AQUA	112	175	3.5
11.09.14	0:45	TERRA	115	171	
13.09.14	0:30	TERRA	40	96	3
14.09.14	1:45	NOAA 19	190	92	3.5
16.09.14	1:24	NOAA 19	43	191	3.5
21.09.14	22:32	MTSAT	40	210	4.5
24.09.14	0:11	TERRA	79	212	4
28.09.14	1:36	AQUA	52	91	4.5
11.10.14	17:13	Suomi NPP	27	80	9
12.10.14	0:01	TERRA		57	5.5
07.11.14	23:44	NOAA 19	40	306	11
08.11.14	1:41	NOAA 19	22	263	7
09.11.14	1:26	NOAA 19	190	125	4
10.11.14	10:40	TERRA	55	124	
22.11.14	14:40	NOAA 19	35	86	8.5
22.11.14	15:10	AOUA	70	85	6.7
22.11.14	15:44	Suomi NPP	115	84	5.5
22.11.14	16:23	NOAA 19	160	84	2.5
22.11.14	18:16	NOAA 18	311	88	
22.11.14	19:57	NOAA 18	350	88	
25.11.14	0:25	TERRA	8	147	7.2
25.11.14	0:59	Suomi NPP	30	222	6
25.11.14	1:55	NOAA 19	60	153	6
25.11.14	2:12	AOUA	72	154	5.5
25.11.14	2:34	Suomi NPP	86	144	5
25.11.14	3:31	NOAA 19	118	140	2.5
25.11.14	5:25	NOAA 18	197	133	2
25.11.14	11:33	TERRA	203	140	
25.11.14	14:48	Suomi NPP	230	160	
25.11.14	15:50	NOAA 19	270	155	
26.11.14	1:05	AQUA	10	212	
26.11.14	19:11	NOAA 18	240	125	4
27.11.14	0:11	TERRA	80	141	4
28.11.14	0:53	TERRA	242	90	6
29.11.14	1:47	AOUA	189	72	4
30.11.14	0:41	TERRA	150	102	4
30.11.14	2:37	NOAA 19	191	100	4
01.12.14	1:35	AQUA	53	134	
15.12.14	15:12	Suomi NPP	136	134	4
29.12.14	0:11	TERRA	18	68	6
06.01.15	16:25	NOAA 19	50	100	
12.01.15	2:12	AQUA	26	251	5
16.01.15	1:47	TERRA	20	260	
		1	i i i i i i i i i i i i i i i i i i i	i i i i i i i i i i i i i i i i i i i	1

Таблица 1 (продолжение)

1	2	3	4	5	6
17.01.15	14:54	Suomi NPP	184	103	5
18.01.15	0:46	Suomi NPP	50	154	4
19.01.15	0:29	TERRA	45	125	3.5
20.01.15	1:25	TERRA	17	71	4
22.01.15	18:26	NOAA 18	5	281	4
25.01.15	2:19	NOAA 19	28	244	5
26.01.15	0:35	TERRA	8	243	3
06.02.15	2:04	AQUA	29	265	3
09.02.15	2:35	AQUA	23	290	3
15.02.15	17:22	NOAA 19	65	266	3.5
16.02.15	0:53	AQUA	70	267	
17.02.15	18:30	NOAA 18	44	137	
18.02.15	5:59	NOAA 18	44	158	3
19.02.15	0:45	Suomi NPP	134	116	3
20.02.15	5:38	NOAA 18	38	100	2.5
21.02.15	5:27	NOAA 18	80	105	3
22.02.15	15:17	Suomi NPP	204	102	2.5
23.02.15	1:00	AQUA	223	108	3.5
01.03.15	5:33	NOAA 18	10	70	3
04.03.15	10:30	TERRA	48	94	8
07.03.15	20:04	NOAA 18	333	92	8
08.03.15	2:19	AQUA	88	67	8
08.03.15	2:52	NOAA 19	141	65	5
08.03.15	4:20	NOAA 18	307	71	3
10.03.15	2:31	NOAA 19	187	96	3.5
12.03.15	6:37	NOAA 18	7	55	
15.03.15	10:10	TERRA	76	197	3.5
15.03.15	11:46	TERRA	168	71	0.5
15.03.15	15:23	Suomi NPP	346	182	
25.03.15	4:26	NOAA 18	10	85	8
03.04.15	3:02	NOAA 19	25	112	4
20.05.15	10:00	TERRA	53	82	6
08.06.15	6:45	NOAA 19	26	135	
09.06.15	0:00	AQUA	95	177	6
16.06.15	15:25	AQUA	8	275	4.7
12.07.15	6:57	NOAA 18	75	97	10.5
12.07.15	10:20	TERRA	328	124	6.5
12.07.15	11:53	TERRA	488	116	5.5
12.07.15	14:25	AQUA	653	111	4
12.07.15	16:45	NOAA 19	898	106	4
12.07.15	19:15	NOAA 19	1120	101	3.5
14.07.15	18:54	NOAA 18	20	217	2
14.07.15	20:33	NOAA 18	59	179	$\frac{2}{2}$
27.11.15	15:00	AQUA	150	92	5
27.11.15	16:37	AQUA	285	96	5
30.11.15	5:08	NOAA 18	151	116	6
19.01.16	5:31	NOAA 18	51	107	7.5

1	2	3	4	5	6
19.01.16	7:08	NOAA 19	78	347	
21.01.16	6:46	NOAA 18	36	265	4.5
24.01.16	0:17	TERRA	5	20	7
24.01.16	1:21	Suomi NPP	116	21	
24.01.16	2:51	NOAA 19	236	22	
05.02.16	16:50	Himawari-8	5	90	7
05.02.16	20:00	Himawari-8	80	92	
05.02.16	23:20	Himawari-8	170	90	
09.02.16	9:10	MSU	142	102	
09.02.16	11:27	Suomi NPP	295	104	
09.02.16	15:35	AQUA	546	103	
12.02.16	23:40	MSU	195	108	10
13.02.16	2:27	NOAA 19	330	108	
13.02.16	4:05	NOAA 19	450	111	
13.02.16	9:30	AQUA	520	98	
24.03.16	16:00	AQUA	96	289	3.5
24.03.16	17:13	NOAA 19	134	289	3.5
20.11.16	2:52	NOAA 19	73	91	6.5
20.11.16	3:10	AQUA	150	92	6
20.11.16	4:29	NOAA 19	389	94	

Таблица 1 (окончание)

ЭКСПЛОЗИВНОЕ ИЗВЕРЖЕНИЕ ВУЛКАНА в 2014—2016 гг.

Новое эксплозивное извержение вулкана началось примерно в 15:00 UTC 6 июня 2014 г. (пепел поднимался до 6 км н.у.м., были слышны взрывы со стороны вулкана, наблюдалось свечение вершины конуса Приемыш) [Гирина и др., 2016; VONA KVERT 2014–07].

Важно отметить, что пепел на протяжении всего извержения 2014—2016 гг. выбрасывался из кратера Приемыша. Во время пепловых выбросов и в межэруптивную фазу работы вулкана, вдоль узкой трещины на его западном склоне и в расщелине на востоке от него, описанных А. Н. Сириным [1958], постоянно наблюдались отдельные мощные фумарольные струи, например, 12 июня 2014 г. на трещине на западном склоне Приемыша выделялись шесть фумарол [Гирина и др., 2016а].

9–10 июня на фоне интенсивной парогазовой деятельности вулкана были отмечены регулярные (через 30–90 мин) пепловые выбросы из кратера Приемыша [Самойленко и др., 2014]. В июне–августе пепел преимущественно поднимался до 4–5 км н.у.м., пепловые и парогазовые шлейфы с небольшим количеством пепла перемещались до 70–300 км преимущественно на восток от вулкана, с 12 июня отмечалась термальная аномалия в районе конуса Приемыш, в августе ее темпера-

тура немного повысилась (см. табл. 1, рис. 2, 3, 4а). Отметим, что в это время пепел выбрасывался из воронки в западной части кратера Приемыша. 19 июня и 9 июля пепел поднимался до 7.2 и 6 км н.у.м., пепловые шлейфы перемещались до 670 км на северо-восток и 120 км на восток от вулкана, соответственно (см. табл. 1, рис. 2).

Эксплозивная активность вулкана была неравномерной: согласно визуальным данным, иногда отмечались редкие пепловые выбросы, при которых формировались отдельные пепловые облака, локально перемещавшиеся от вулкана; иногда наблюдались серии пепловых выбросов, тогда постепенно формировался непрерывный пепловый шлейф. Чем дольше происходили серии пепловых выбросов, тем насыщеннее пеплом был шлейф, и тем дальше от вулкана было его распространение в атмосфере; на спутниковых снимках при этом наблюдался непрерывный пепловый шлейф, протягивавшийся непосредственно от конуса Приемыш. После отдельного выброса пепла из кратера Приемыша на спутниковых снимках отмечалось локальное пепловое облако без связи с вулканом, с течением времени оно удлинялось и удалялось от него согласно направлению ветра.

В сентябре извержение вулкана усилилось: ежедневно отмечались серии пепловых выбросов и термальная аномалия в районе вулкана (см. рис. 2, 3). Согласно спутниковым данным, ГИРИНА и др.

Рис. 3. Температура и размер термальной аномалии вулкана Жупановский при извержении в 2013 и 2014–2016 гг.

Рис. 4. Примеры эксплозивной активности вулкана Жупановский при извержении в 2014–2016 гг.: 10 июля 2014 г., фото Е. Ненашевой (а); проекция пепловой тучи вулкана Жупановский на вершину вулкана Авачинский 25 ноября 2014 г., фото А. Сокоренко (б); 28 ноября 2014 г., фото А. Сокоренко (в); 8 марта 2015 г., фото А. Гаврилова (г); 19 января 2016 г., видеоданные КФ ФИЦ ЕГС РАН (д); 12 февраля 2016 г., фото А. Сокоренко (е).

Рис. 5. Примеры распространения пепловых шлейфов и отложений от вулкана Жупановский на спутниковых снимках: 28 сентября 2014 г., Landsat-8 (a); 1 декабря 2014 г., Landsat-8 (б); 6 февраля 2016 г., Канопус-В (в); 1 апреля 2016 г., Ресурс-П № 2 (г); а, б – данные NASA, США, в, г – ДЦ НИЦ Планета, Хабаровск.

7 сентября эксплозии поднимали пепел до 10– 10.5 км н.у.м., пепловый шлейф протягивался до 1100 км на юго-восток от вулкана; в другие дни сентября пепловые шлейфы перемещались на высотах 3–4.5 км н.у.м. до 100–200 км в различных направлениях от вулкана (см. табл. 1, рис. 2, 5а).

С октября 2014 г. начала проявляться следующая закономерность: наиболее сильная эксплозивная активность вулкана происходила после перерыва в его эруптивной деятельности. Например, после относительного покоя вулкана с 1 по 10 октября эксплозии поднимали пепел 11 октября до 8–9 км н.у.м., после покоя с 13 октября до 7 ноября выбросы пепла 8 ноября достигали 11 км н.у.м., после покоя с 11 по 21 ноября эксплозии поднимали пепел 22 ноября до 8.5 км н.у.м. (см. табл. 1, рис. 2).

ВУЛКАНОЛОГИЯ И СЕЙСМОЛОГИЯ № 1 2018

Время от времени пепловые выбросы и шлейфы можно было наблюдать из гг. Петропавловск-Камчатский и Елизово, например, 28 августа, 28 сентября, 25 ноября 2014 г.; 8 марта 2015 г.; 19 и 21 января, 12 февраля 2016 г. (см. рис. 46, 4е). Мощные пепловые эксплозии вулкана 25 ноября 2014 г. доставили немало волнений жителям агломерации Петропавловск-Камчатский – Елизово: ветер уносил темную пепловую тучу на юго-восток от Жупановского, в какой-то момент проекция тучи совпала с вершиной Авачинского и многим людям показалось, что началось извержение домашнего вулкана, но пепловая туча продолжала перемещаться в сторону океана и волнения улеглись (см. рис. 4б).

В периоды со 2 по 14 декабря, с 16 по 28 декабря, с 30 декабря 2014 г. по 4 января 2015 г., с 26 января

по 5 февраля, с 10 по 14 февраля, с 23 по 28 февраля 2015 г. вулкан находился в состоянии относительного покоя, в другие дни ноября—декабря 2014 г. и января—февраля 2015 г. отмечались выбросы пепла до 6 км н.у.м., окрестности вулкана были покрыты отложениями пепла (см. табл. 1, рис. 2, 4в, 5б). Следует сказать, что термальная аномалия в районе активного кратера фиксировалась нерегулярно: иногда она отмечалась во время пепловых выбросов, иногда — в межэруптивные фазы деятельности вулкана, то есть термальная аномалия в районе Приемыша была отражением мощности потока тепла, поступающего из недр вулкана при выносе и пепла, и парогазовой смеси.

В марте 2015 г. эруптивная активность вулкана вновь повысилась: 4, 7, 8 и 25 марта наблюдались пепловые выбросы до 8 км н.у.м. [VONA KVERT 2015-118 и 2015-138], в другие дни марта-июня пепловые шлейфы на высотах от 4 до 6 км н.у.м. протягивались до 400 км преимущественно в восточных направлениях от вулкана (см. табл. 1, рис. 2, 4). Например, 8 марта вертикальная пепловая колонна над кратером Приемыша содержала большое количество водяного пара, образовавшего на поверхности растекавшегося облака своеобразную "шапочку" (см. рис. 4г). По визуальным данным, парогазовые струи подмешивались в пепловую колонну также с поверхности небольших пирокластических потоков, спускавшихся по ложбинам склонов вулкана и растапливавших снег, что, кроме прочего, указывало на высокую температуру эруптивного материала. Верхняя часть колонны постепенно превращалась в пепловый шлейф.

С марта 2015 г. количество перерывов в эксплозивной активности вулкана возросло, например, они были отмечены: с 5 по 7 марта, с 16 по 24 марта, с 26 марта по 2 апреля, с 4 апреля по 19 мая, с 23 мая по 7 июня, с 9 по 15 июня, с 17 июня по 11 июля. Регистрировались преимущественно пепловые облака, а не шлейфы, то есть эксплозивная активность вулкана стала более разреженной, выбросы пепла происходили через длительные перерывы во времени. Пепловые облака поднимались до 4–6 км н.у.м. и прослеживались до 100–400 км от вулкана (см. табл. 1, рис. 2).

12 июля 2015 г. произошло неординарное событие в извержении Жупановского. Согласно данным из работы [Сенюков и др., 2015], с 06:26 UTC 12 июля в течение 12 мин в районе вулкана Жупановский регистрировалась серия поверхностных сейсмических событий. По спутниковым данным ИС VolSatView, эксплозии подняли пепел до 10 км н.у.м., пепловый шлейф в течение 10 ч протянулся на 1100 км на юго-восток и восток от вулкана [VONA KVERT 2015–179] (см. табл. 1, рис 2). Заключительным аккордом события стало разрушение южной части активного конуса Приемыш, произошедшее во время или после его сильной эксплозивной деятельности 12 июля. а также меньший по объему материала обвал части его конуса 14 июля [VONA KVERT 2015-182]. По данным Н.В. Горбач и др. [2015], образования собственно обвала залегали в запалном секторе поля отложений обрушения, материал был холодным, большинство глыб представлены лавами вершинных потоков Приемыша. Эти образования были окружены языками грязевых потоков протяженностью до 10 км. В непосредственной близости к фронту отложений кустарники и деревья были смяты, отдельные из них повалены. Признаков термического и ударного воздействия на растительность не наблюдалось. Классификация отложений, выполненная с помощью инструментов ИС VolSatView, позволила выявить три характерных участка на этих образованиях, два из которых относятся к 12 июля и один к 14 июля: большая часть отложений сформировалась в процессе или в конце эксплозивной активности Приемыша 12 июля; вследствие растапливания ледников и снежников, на которые обрушивался горячий материал эксплозий, образовались грязевые потоки, широким плащом покрывшие подножие вулкана; в результате эксплозий и обрушений 14 июля, на западную часть поля отложений, сформированных 12 июля, дополнительно обрушился относительно сухой грубообломочный материал [Гордеев и др., 2016]. Общая площадь перемещенных отложений, образовавшихся 12-14 июля, составила около 20 км², при средней мощности отложений 2 м их объем равен 0.04 км³ [Гордеев и др., 2016]. Пепловые шлейфы 12–14 июля протянулись на тысячи километров на восток от вулкана и оставались в атмосфере над п-овом Аляска до 16 июля (см. табл. 1, рис. 6).

С 13 июля до 27 ноября 2015 г. Жупановский был относительно спокоен, изредка наблюдалась только его фумарольная деятельность. 27 и 30 ноября эксплозии поднимали пепел до 5-6 км н.у.м., продукты разрушенной при этих взрывах части конуса Приемыш отложились на материале обрушений 12-14 июля. Выполненная с помошью инструментов ИС VolSatView классификация отложений обвала позволила разделить их на свежие, оставшиеся неизменными после формирования, и перемещенные водой, появившейся при растапливании горячими отложениями снега и льда на склонах вулкана [Гордеев и др., 2016а]. Площадь отложений 30 ноября составила около 16 км², при мощности 1.5 м объем их равен 0.02 км³, т.е. в два раза меньший, чем при обрушениях 12-14 июля [Гордеев и др., 2016а].

С 1 декабря до конца 2015 г. Жупановский вновь был относительно спокоен, и, казалось, его извержение закончилось, однако в январе 2016 г. эксплозивная активность вулкана возобновилась [Гирина и др., 2016б]. После длительного молчания вулкана в течение 50 дней (с 30 ноября 2015 г.), 19 января

Рис. 6. Распространение аэрозольных облаков от вулкана Жупановский после эксплозивных событий 12–14 июля 2015 г.

2016 г. эксплозии подняли пепел из кратера Приемыш до 8 км н.у.м.; по спутниковым данным из ИС VolSatView, пепловый шлейф по сложной траектории смещался на северо-запад от вулкана, после эксплозивного события в районе конуса Приемыш отмечалась слабая термальная аномалия (см. табл. 1, рис. 2, 3, 4д) [Гирина и др., 20166]. Единичные мощные эксплозии с выносом пепла до 7–10 км н.у.м. наблюдались также 21 и 24 января, 5, 7, 9 и 12 февраля, 24 марта и 20 ноября, свежие отложения пепла четко выделялись на покрытых снегом склонах вулкана (см. табл. 1, рис. 2, 5в, 5г) [Гирина и др., 20166].

Самое сильное эксплозивное событие 2016 г., при котором пепел поднялся до 10 км н.у.м. и остатки южной стенки кратера конуса Приемыш были окончательно разрушены, произошло 12 февраля (см. рис. 4е) [Гирина и др., 2016б]. По спутниковым данным, в 23:40 UTC 12 февраля фронт пеплового шлейфа был на расстоянии 195 км от вулкана, 09:30 UTC 13 февраля – в 520 км от вулкана (см. табл. 1). Сначала распространение пеплового шлейфа происходило на восток от вулкана, затем в районе п-ова Шипунский фронтальная часть пеплового шлейфа начала растягиваться на север и юг, перемещаясь полосой на восток от вулкана. В дальнейшем, облако все больше растягивалось с севера на юг и, подхваченное циклоном, начало перемещаться на северо-восток от вулкана. По данным Системы оповещения о вулканическом пепле и SO₂ в рамках Службы поддержки авиации

(Support Aviation Control Service (SACS) SO₂ & Ash Notification System, http://sacs.aeronomie.be/), в 22:44 UTC 12 февраля аэрозольное облако, содержащее SO₂, находилось напротив п-ов Шипунский, в 08:33 UTC 13 февраля вытянутое с севера на юг аэрозольное облако располагалось южнее Командорских островов Алеутской дуги. Согласно данным AIRS SO₂, 13 февраля в 01:41-01:47 UTC в аэрозольном облаке площадью 3832 км² максимальное содержание SO₂ составляло 25.2 DU (Dobson Unit – см. примечание к табл. 2), в 15:11–15:17 UTC в облаке площадью 8099 км² максимальное содержание SO₂ было 13.4 DU [Гирина и др., 2016б]. Следует отметить, что до эксплозивного события в районе конуса Приемыш отмечалась слабая термальная аномалия, за 0.5 ч до взрыва температура ее немного повысилась (см. рис. 3).

После перерыва в активности вулкана на протяжении 40 дней, 24 марта произошло сильное эксплозивное событие с выносом пепла до 8 км н.у.м., к подножию Приемыша обрушились пирокластические и обвальные отложения, пепел отложился на площади не менее 200 км² (см. рис. 5г) [Гордеев и др., 2016а].

Заключительным аккордом извержения вулкана Жупановский в 2014—2016 гг. стало событие 20 ноября 2016 г.: в 02:29 UTC эксплозии подняли пепел из конуса Приемыш до 7 км н.у.м., пепловый шлейф протянулся до 500 км на восток от вулкана (см. табл. 1, рис. 2) [VONA KVERT 2016—184].

ОБСУЖДЕНИЕ МАТЕРИАЛОВ

В 2013 г. (22–24 октября) в основном были зарегистрированы шлейфы, содержавшие небольшое количество вулканического пепла. Шлейфы протягивались до 50–120 км на юго-восток, юг и юго-запад от вулкана (см. табл. 1, рис. 2). Судя по характеру и протяженности шлейфов, эмиссия пепла из фумарол была прерывистой, наибольшее его количество поступило в атмосферу после проработки каналов выноса – ближе к завершению извержения.

Пеплы и на вершине вулкана и у его подножия были пылеватыми (рис. 7), в них преобладал резургентный материал (обломки пород старого облика и измененные, а также обломки вторичных минералов – кварца, гипса и др.) [Маневич и др., 2015]. Исходя из этих данных, а также из отсутствия высокотемпературной аномалии в районе вулкана во время извержения и небольшого объема изверженного материала, 22–24 октября происходило фреатическое извержение вулкана Жупановский. Центрами мощных продувок газа с захватом небольшого количества пепла служили фумаролы на западном склоне Приемыша (см. рис. 1) [Гирина и др., 2014].

Рис. 7. Кумулятивные кривые гранулометрического состава пеплов, изверженных из конуса Приемыш в 2013–2016 гг.

Обозначение образцов пеплов, 2013 г.: 1 – юго-восточный склон конуса на 1187 км н.у.м. (пеплопад 22–24 октября); 2014 г.: 2 – в 4 км к востоку от конуса на 1115 м н.у.м. (7–10 июня); 3 – в 40 км к востоку (7 июня); 2015 г.: 4 – в 18 км к западу-юго-западу (Таловские источники) (16 января); 5 – в 23 км к юго-западу (Налычевские источники) (16 января); 6 – в 18 км к западу-юго-западу (Таловские источники) (16 января); 7 – в 48 км к юго-востоку (мыс Налычево) (12–13 июля); 2016 г.: 8 – в 36 км к юго-западу (Пиначевский перевал) (21 января); 9 – в 18 км к западу-юго-западу (пиначевский перевал) (21 января); 9 – в 18 км к западу-юго-западу (13 февраля); 10 – в 34 км к юго-востоку (р. Вахиль) (13 февраля); 11 – 46 км к востоку (оз. Калыгирь) (20 ноября).

Во время извержения вулкана с 6 июня 2014 г. по 20 ноября 2016 г. пепловые эксплозии и шлейфы, насыщенные вулканическим пеплом, отмечались на спутниковых снимках примерно 112 дней в течение 17 месяцев. Эксплозивная активность вулкана в 2014-2016 гг. происходила неравномерно: непрерывная работа вулкана, выраженная в наибольшем количестве серий эксплозий и пепловых шлейфов, отмечалась в июне (10 дней), июле (7 дней), августе (8 дней), сентябре (16 дней), ноябре (11 дней) 2014 г. и в январе (10 дней), феврале (11 дней), марте (8 дней) и июле (5 дней) 2015 г. (см. табл. 1, рис. 2). В другое время пепловые шлейфы наблюдались 1-2 дня в месяц: например, 27 и 30 ноября 2015 г.; 19, 21 и 24 января, 5, 7, 9 и 12-13 февраля, 24 марта и 20 ноября 2016 г. [Гирина и др., 2016, 2016а, 2016б; VONA KVERT 2016-184] (см. табл. 1, рис. 2). Наиболее активно вулкан работал с июня до октября и в ноябре 2014 г., с января до апреля 2015 г. и в январе-феврале 2016 г., в это время на спутниковых снимках в районе конуса Приемыш почти постоянно отмечалась яркая термальная аномалия (см. рис. 3). Гранулометрический состав пеплов, отобранных на различных расстояниях от конуса Приемыш (от 4 до 48 км), показывает преобладание тонких и мелкозернистых фракций, при этом более грубый материал был вынесен при отдельных мощных эксплозивных событиях 2016 г. (см. рис. 7).

Такая высокая активность вулкана — мощные выбросы пепла до 10 км н.у.м., шлейфы, насыщенные большим количеством пепловых частиц, яркая термальная аномалия в районе Приемыша, не могла быть просто фреатической. Это подтвердилось при изучении состава пепла — в нем обнаружилось достаточное количество ювенильного вещества [Горбач и др., 2016]. Комплекс вышеприведенных данных дает право говорить о фреато-магматическом характере извержения.

Известно, что скорость распространения пепловых шлейфов от вулкана зависит от мощности извержения (плотности импульса магмы, насыщенности шлейфа пепловыми частицами и т.д.) и параметров атмосферы (стратификации, скорости ветра в различных ее слоях и т.д.) [Асатуров и др., 1986; Encyclopedia of Volcanoes, 2000]. Независимо от высоты подъема пепла, иногда наблюдалось расплывание и растягивание пепловых шлейфов перпендикулярно или вкрест их смещению по направлению ветра, скорость распространения пепловых шлейфов варьировалась от 35 до 170 км/ч. Например, по видео и спутниковым данным, при эксплозивном событии 20 ноября 2016 г. пепловый шлейф поднялся до 7 км н.у.м. По данным спутника Himawari-8, с 02:30 до 04:00 UTC 20 ноября фронтальная часть пеплового шлейфа перемещалась со скоростью 140-170 км/ч, что соответствует

Дата	Время, UTC	Расстояние от вулкана SO ₂ -облака или шлейфа, км	Площадь SO ₂ -облака или шлейфа, км ²	DU	Масса, тыс. т
19.06.14	16:23	140	5746	30.5	2.6
20.06.14	1:59	760	7823	13.8	1.3
07.09.14	2:53	200	2955	39.3	2.5
07.09.14	14:47	1300	7388	10.9	0.8
08.11.14	1:29	78	3592	23.6	1.5
22.11.14	15:11	75	937	21.4	0.5
25.11.14	2:11	71	1561	41.9	1
08.03.15	2:17	95	895	9.1	0.1
12.07.15	14:23	620	12680	95.4	15.9
13.07.15	1:35	1700	40546	49.9	9.8
13.07.15	13:23	2800	43173	19.5	8.1
14.07.15	12:29	3800	54885	20.3	11.7
14.07.15	22:05	3900	37075	23.2	8.8
15.07.15	13:11	3200	33607	19.7	2.8
15.07.15	22:53	3450	30204	11.9	2.8
16.07.15	13:53	3400	11137	8.8	1.1

Таблица 2. Характеристика SO_2 — эмиссии по данным спутникового прибора AIRS [Prata, Bernardo, 2007] в течение извержения вулкана Жупановский в 2014–2015 гг.

Примечание.	DU (Dobson Unit) – единица	Добсона для измерения в	концентрации SO ₂ , р	равная 0.01 мм сжатого	слоя озона
при 0 °С.			-		

определениям скорости ветра на этих высотах в тот же день по атмосферному профилю.

Высокая циклоническая активность в районе Камчатки часто осложняла движение пепловых шлейфов от вулкана. Например, по данным Токио VAAC, в 13:20 UTC 24 марта 2016 г. эксплозии подняли пепел до 8 км н.у.м., спутниковые данные KVERT показали перемещение облака пепла размером 8x10 км на высоте 8 км н.у.м. на расстояние 134 км на северо-запад от вулкана, но в это же самое время другое пепловое облако на высоте 3.5-4.0 км н.у.м. перемещалось на запад-юго-запад от вулкана, и оно оставило след в виде отложений пепла на склонах вулкана на площади не менее 200 км² (см. рис. 5г). Восстановление эруптивных событий 24 марта стало возможным благодаря инструментам, созданным в ИС VolSatView [Гордеев и др., 2016а].

С самого начала извержения вулкана в 2014 г. на спутниковых снимках часто регистрировались аэрозольные облака, сопровождавшие пепловые шлейфы (http://sacs.aeronomie.be). Чем мощнее было эксплозивное событие, тем выше была концентрация SO_2 в аэрозольных облаках и продолжительнее их существование в атмосфере (табл. 2, см. рис. 6). Если в среднем масса SO_2 при эксплозиях варьировалась от 0.1 до 2.6 тыс. т, то во время событий 12 и 14 июля 2015 г., сопровождавшихся обрушениями частей конуса Приемыш, породы которого долгие годы подвергались метасоматическому преобразованию, масса SO_2 составляла 15.9 и 11.7 тыс. т, соответственно (см. табл. 2). Вероятно, повышение на порядок массы SO_2 в аэрозолях 12 и 14 июля 2015 г. по сравнению с аэрозолями эксплозивных событий 2014—2015 гг., связано с высвобождением SO_2 из разрушенных пород Приемыша во время их обвала на склоны вулкана. Меньший объем обвальных отложений, образовавшихся 14 июля 2015 г., обусловил несколько меньший вынос массы SO_2 (см. табл. 2).

Изменение конфигурации и площади аэрозольных облаков в течение 12-16 июля 2015 г. показано в табл. 2 и на рис. 6. После эксплозий и обвала части постройки Приемыша 12 июля аэрозольное облако смещалось на юго-восток от вулкана, в 01:35 UTC13 июля оно было отмечено в районе центральной части Алеутской островной дуги. В 13:23 UTC этого же дня облако, увеличившись по простиранию в пять раз, двигалось на востоксеверо-восток вдоль северной части Алеутской дуги, в 12:29 UTC14 июля облако было вытянуто вдоль северной части восточного побережья Тихого океана. Высокая циклоническая активность в районе полуострова Аляска привела сначала к концентрации облаков и вытягиванию их с северо-запада на юго-восток, затем к дроблению их на более мелкие облака и растягиванию таких облаков в полосу с юго-запада на северо-восток. С 13:11 UTC15 июля до 13:53 UTC16 июля наблюдалось дальнейшее растягивание полосы отдельных облаков с юго-запада на северо-восток и ее

перемещение в северо-восточном направлении (см. рис. 6). Хотя площадь аэрозольных облаков увеличивалась, суммарная масса SO₂ в них постепенно уменьшалась (см. табл. 2).

РЕЗУЛЬТАТЫ И ЗАКЛЮЧЕНИЕ

1. Благодаря непрерывному спутниковому мониторингу вулкана Жупановский с помощью ИС VolSatView, детально описаны все эксплозивные события, происходившие на вулкане во время извержений в 2013 и 2014—2016 гг.

2. В течение 22–24 октября 2013 г. пепел поднимался до 5–6 км н.у.м., пепловые шлейфы протягивались до 300 км от вулкана. При извержении в 2014–2016 гг. высота пепловых выбросов достигала 8–10 км н.у.м., протяженность пепловых шлейфов – до 1100 км, основные направления перемещения от вулкана – восток–юго-восток. Наиболее активно вулкан работал с июня до октября и в ноябре 2014 г., с января до апреля 2015 г. и в январе– феврале 2016 г., в это время на спутниковых снимках в районе конуса Приемыш почти постоянно отмечалась яркая термальная аномалия.

3. Во время сильных эксплозивных событий 2014—2016 гг. на спутниковых снимках регистрировались аэрозольные облака. В среднем масса SO_2 при эксплозиях варьировалась от 0.1 до 2.6 тыс. т, но во время событий 12 и 14 июля 2015 г., сопровождавшихся обрушениями частей конуса Приемыш, породы которого долгие годы подвергались метасоматическому преобразованию, масса SO_2 составляла 15.9 и 11.7 тыс. т, соответственно.

4. Комплексный анализ спутниковых и наземных данных извержений вулкана Жупановский, а также состава пеплов разных периодов извержений, позволил уточнить информацию о фреатическом характере извержения вулкана в 2013 г. и фреато-магматическом – в 2014–2016 гг.

Обработка данных производилась с использованием ресурсов Центров коллективного пользования "Центр данных ДВО РАН" (ВЦ ДВО РАН) и "ИКИ-Мониторинг" (ИКИ РАН). Для хранения инструментальной информации и результатов ее обработки были применены системы и технологии, созданные при поддержке РФФИ (грант № 15-29-07953).

Работа выполнена при поддержке Российского научного фонда (№ 16-17-00042).

СПИСОК ЛИТЕРАТУРЫ

Асатуров М.Л., Будыко М.И., Винников К.Я. и др. Вулканы, стратосферный аэрозоль и климат Земли. Л.: Гидрометеоиздат, 1986. 256 с.

Базанова Л.И., Дирксен О.В., Кулиш Р.В., Карташева Е.В. Эволюция новейшего вулканизма Жупанова хребта (Камчатка) // Вулканизм и геодинамика // Материалы IV Всерос. симпозиума по вулканологии и палеовулканологии. Петропавловск-Камчатский: ИВиС ДВО РАН, 2009. Т. 1. С. 265–268.

Гирина О.А., Ненашева Е.М. Извержения вулкана Жупановский в 2013–2015 гг. // Отчизны верные сыны. Материалы XXXII Крашенинниковских чтений. Петропавловск-Камчатский: Камчатская краевая научная библиотека им. С.П. Крашенинникова, 2015. С. 172–174. DOI: 10.13140/RG.2.1.2125.8720.

Гирина О.А., Маневич А.Г., Мельников Д.В. и др. Активность вулканов Камчатки в 2013 г. // Вулканизм и связанные с ним процессы. Материалы XVII региональной научной конференции, посвященной Дню вулканолога, 27–28 марта 2014 г. Петропавловск-Камчатский: ИВиС ДВО РАН, 2014. С. 38–45.

Гирина О.А., Маневич А.Г., Мельников Д.В. и др. Активность вулканов Камчатки в 2014 г. // Вулканизм и связанные с ним процессы. Материалы XVIII региональной научной конференции, посвященной Дню вулканолога, 30 марта – 1 апреля 2015 г. Петропавловск-Камчатский: ИВиС ДВО РАН, 2016. С. 21–25.

Гирина О.А., Маневич А.Г., Мельников Д.В. и др. Активность вулканов Камчатки и Северных Курил в 2015 г. и их опасность для авиации // Вулканизм и связанные с ним процессы. Материалы XIX региональной научной конференции, посвященной Дню вулканолога, 29–30 марта 2016 г. Петропавловск-Камчатский: ИВиС ДВО РАН, 2016а. С. 35–45.

Гирина О.А., Маневич А.Г., Мельников Д.В. и др. Эксплозивная активность вулкана Жупановский в 2016 г. // Вулканизм и связанные с ним процессы. Материалы XIX региональной научной конференции, посвященной Дню вулканолога, 29–30 марта 2016 г. Петропавловск-Камчатский: ИВиС ДВО РАН, 20166. С. 24–34.

Горбач Н.В., Самойленко С.Б., Плечова А.А., Мельников Д.В. Обвал на вулкане Жупановский (Камчатка) в июле 2015 г.: первые данные и наблюдения // Вестник КРАУНЦ. Сер. Науки о Земле. 2015. № 3. Вып. 27. С. 5–11.

Горбач Н.В., Плечова А.А., Портнягин М.В., Философова Т.М. Состав вулканических стекол продуктов текущего извержения вулкана Жупановский: идентификация ювенильного материала // Вулканизм и связанные с ним процессы. Материалы XIX региональной научной конференции, посвященной Дню вулканолога, 29–30 марта 2016 г. Петропавловск-Камчатский: ИВиС ДВО РАН, 2016. С. 46–52.

Гордеев Е.И., Гирина О.А. Вулканы и их опасность для авиации // Вестник Российской академии наук. 2014. Т. 84. № 2. С. 134–142. DOI: 10.7868/S0869587314020121.

Гордеев Е.И., Гирина О.А., Лупян Е.А. и др. Информационная система VolSatView для решения задач мониторинга вулканической активности Камчатки и Курил // Вулканология и сейсмология. 2016. № 6. С. 62–77. DOI: 10.7868/S0203030616060043. Гордеев Е.И., Гирина О.А., Лупян Е.А. и др. ИС VolSatView: комплексный анализ данных об эксплозивных извержениях вулканов Камчатки // Вестник ДВО РАН. 2016а. № 5. С. 120–127.

Литвинов А.Ф., Бурмаков Ю.А. Геологическое строение и четвертичный вулканизм Жупанова хребта (Восточная Камчатка) // Вулканология и сейсмология. 1993. № 2. С. 16–26.

Маневич Т.М., Горбач Н.В., Самойленко С.Б. Количественные характеристики и состав пеплов вулкана Жупановский, изверженных в 2013–2015 гг. // Вулканизм и связанные с ним процессы. Материалы XVIII региональной научной конференции, посвященной Дню вулканолога, 30 марта – 1 апреля 2015 г. Петропавловск-Камчатский: ИВиС ДВО РАН, 2015. С. 83–86.

Масуренков Ю.П., Флоренский И.В., Мелекесцев И.В. Вулкан Жупановский // Действующие вулканы Камчатки. В 2-х томах. М.: Наука, 1991. Т. 2. С. 216–227.

Пузанков М.Ю., Базанова Л.И., Дирксен О.В. и др. Гибридные лавы конуса Приемыш (Жупановская группа вулканов, Камчатка) // Вулканизм и связанные с ним процессы. Материалы XVIII региональной научной конференции, посвященной Дню вулканолога, 30 марта — 1 апреля 2015 г. Петропавловск-Камчатский: ИВиС ДВО РАН, 2015. С. 139–145.

Самойленко С.Б., Мельников Д.В., Чирков С.А., Маневич Т.М. Активизация Жупановского вулкана в 2013–2014 гг. // Вестник КРАУНЦ. Сер. Науки о Земле. 2014. № 1. Вып. 23. С. 21–26.

Сенюков С.Л., Нуждина И.Н., Дрознина С.Я. и др. Сейсмичность района вулкана Жупановский в

2000—2015 гг. // Проблемы комплексного геофизического мониторинга Дальнего Востока России. Материалы конференции, 27 сентября — 3 октября 2015 г. Петропавловск-Камчатский. Обнинск: ГС РАН, 2015. С. 106—110.

Сирин А.Н. Состояние некоторых вулканов Камчатки в начале 1957 г. // Бюлл. вулканол. станций. 1958. № 27. С. 16–24.

Encyclopedia of Volcanoes / H. Sigurdsson – editorin-chief. San Diego, San Francisco, New York, Boston, London, Sydney, Toronto: Academic Press, 2000. 1418 p.

Prata A.J., Bernardo C. Retrieval of volcanic SO2 column abundance from Atmospheric Infrared Sounder data // J. Geophys. Res. 2007. V. 112. D20204. DOI: 10.1029/2006JD007955.

VONA KVERT 2013-26: http://www.kscnet.ru/ivs/kvert/ van/index.php?n=2013-26

VONA KVERT 2014-07: http://www.kscnet.ru/ivs/kvert/ van/index.php?n=2014-07

VONA KVERT 2015-118: http://www.kscnet.ru/ivs/kvert/ van/index.php?n=2015-118

VONA KVERT 2015-138: http://www.kscnet.ru/ivs/kvert/ van/index.php?n=2015-138

VONA KVERT 2015-179: http://www.kscnet.ru/ivs/kvert/ van/index.php?n=2015-179

VONA KVERT 2015-182: http://www.kscnet.ru/ivs/kvert/ van/index.php?n=2015-182

VONA KVERT 2016-184: http://www.kscnet.ru/ivs/kvert/ van/index.php?n=2016-184